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SUMMARY

A rigorous analytical solution is developed for the lateral linear shear response of embankment dams in semi-cylindrical
valleys. Closed-form algebraic expressions are presented pertaining to both free and base-induced oscillations, and
extensive parametric and comparative studies elucidate the prominent cﬂ'ec(s of canyon geometry (shape and aspect ratio)
on dynamic response. Harmonic steady-state as well s carf d shear strains
in the dam are studied and compared with those obtained from J-Dlmensmna] analyses for other canyon geometries, as
well as from 2-Dimensional (2-D) analyses of the dam mid-section. It is shown that such 2-D analyses may provide
significantly lower values of near-crest accelerations, but slightly higher values of shear strains and stresses than the 3-D
analyses. The proposed method of: least th ive than other presently available
numerical procedures.

INTRODUCTION

About 30 years ago Hatanaka' and Ambraseys? showed that the fundamental natural frequency in lateral
shear vibration of a dam built in a narrow rectangular canyon is higher than that of an infinitely long dam with
an identical cross-section. These early studies were only isolated attempts to address the issue of the effects of
canyon geometry (shape and dimensions) on the dynamic rcsponsc of earth and rockfill dams. It is only in the
last 5 years that satisfactory solutions have been developed to thi: 3-Di i (3-D) problem.

Martinez and Bielak® studied the lateral response of earth structures having a plane of symmetry
perpendicular to the longitudinal axis. To avoid the expense of 3-D finite-clement analyses, they used a 2-D
(plane) finite-element in conjunction with a Fourier expansion of the solution in the longitudinal direction;
displacements and forces were considered to be the sum of the contribution of a limited set of modes.
Longitudinal displacements were ignored and natural frequencies and shapes were obtained by solving the
corresponding eigenvalue problem. The presented results showed substantial differences in response between
dams in rectangular and triangular narrow canyons.

A different app ion has been by Ohmachi.* * Both longitudinal and vertical
displacements were ignored and the dam was divided into superelements through vertical, closely-spaced
transverse planes. Thus, each element had the shape of a truncated pyramid, the bases of which were two
neighbouring cross-sections. It was then assumed to behave during vibration as a triangular shear beam whose
geometry and properties correspond to the middle section of that element. Thus, the law of distribution of
displacements within each element was obtained from the shear-beam modal shapes. A linear interpolation
function was used to express the displacement shape in the longitudinal direction and by enforcing
compatibility of deformation between the superelements, the solution was obtained in the form of natural
frequencies and modal shapes. Ohmachi’s results for idal and tri canyons
conﬁrmed the significance of canyon geometry found by Martinez and Bielak,? allhough there are some
quantitative differences in the natural frequencies reported in these two studies for dams in triangular canyons.

Makdisi et al. developed a 3-D finite-element formulation by replacing the 2-D plane-strain i isoparametric
elements of the computer code LUSH by prismatic longitudinal elements with six faces and eight nodal points.
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To redi d ti i they ignored longitudinal displ: and assumed that
only shear waves can propagate vertically and horizontally in the embankment. sing this model, results were
obtained and presented for steady-state and transient response of homogeneous dams in triangular canyons.
Subsequent work at Berkeley”® avoided the afi i implifyis iction on longitudi
deformations and presented results for acceleration and shear stresses developed in an idealized and in an
actual dam cross-section. These studies showed that the presence of the rigid triangular boundary increases the
fundamental frequencies, and seems to increase the seismic accelerations while decreasing the seismic shear
strains. More extensive parameter studies using this formulation would certainly be of interest.

Finally, Abdel-Ghaffar and Koh® developed a solution which is based on the Rayleigh-Ritz method, uses
sinusoidal basis functions and involves an appropriate transformation of the dam geometry into a cuboid.
Results have been presented for natural frequencies and mode shapes of a dam in a trapezoidal canyon.

Despite all this substantial progress, much has still to be learned ding the f i i ismi
behaviour of embankment dams built in narrow valleys. Moreover, and in view of the very high computer
storage and time requirements of most of the aforementioned formulations, it would be desirable to achieve
closed-form analytical solutions for some idealized canyon geometries. Availability of such solutions would
(i) allow extensive parameter studies to be cond i i whence i insight could be
gained into the dynamics of the problem; (i) provide a means of checking the more sophisticated
formulations; and (jii) offer a valuable tool for preliminary design calculations.

To this end, the present paper develops a closed-form analytical solution for the dy ic lateral f
an embankment dam built in a semi-cylindrical canyon, as sketched in Figure 1. Only linear shearing
deformations are considered and the results are presented in the form of suprisingly simple algebraic

ions for natural ies, modal shapes, steady transfer ions for h ic base motion
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and participation factors for i i p are made with the results of 2-
D plane-strain analyses of the dam ‘mid-section, as well as with 3-D results for canyons of different shapes. It is
worthy of note that the proposed method of analysis is at least three orders of magnitude less expensive than

other presently available pi Adirect : while not muchi ion is presently
available for the second and higher natural frequencies and mode shapes, or for the acceleration and strain
transfer ions well beyond the 1 such i ion is provided in this paper, which

thereby offers new insights into the effects of valley geometry on the seismic response.

Although the choice of a semi-cylindrical (U-shaped) canyon was undoubtedly motivated by the ensuing
mathematical convenience, such a shape does in fact constitute a reasonable idealization in many actual cases.
For example, the valleys of the Kisenyama rockfill dam in Japan,'° of El Infiernillo dam in Mexico'! and of
Rama earth dam in Yugoslavia,'? just to name a few from the published literature, may be idealized with
reasonable accuracy as semi-cylindrical.

SIMPLIFYING ASSUMPTIONS

With reference to Figure 2, the following simplifying assumptions are made in order to derive the governing
equations of motion:
1. The dam consists of a uniformand linearly d by aconstant
p, a constant shear modulus G and a constant hysteretic damping ratio §. The assumption of linear shear-
hear-strain beh: is, of course, only for small levels of strain; it contradicts reality at
shear strains larger than about 0-01 per cent. Note, however, that in practice this limitation may be
approximately overcome by performing a series of linear analyses, each one using shear moduli and damping
ratios consistent with the level of strains resulting from the previous analysis.!> ' The assumption of a
constant G, on the other hand, has been made for mathematical convenience, in the desire to achieve a closed-
form analytical solution. In reality, for most soils G increases nearly in proportion to the square-root of the
applied mean normal stress; hence, in earth dams, G increases with depth from the crest and away from the
sloping faces, rather than remaining constant. Such an inhomogeneity may have an influence on the dynamic
behaviour of an earth dam, s it is evident from the results of 2-D comparative studies.'*™! # However, results
from a number of 3-D studies also suggest that the effects of inh ity on the resp: bout the same
for both 2-D and 3-D geometries.* *'° Hence, a 3-D solution for a homogeneous dam, such as the one
developed herein, can be extended to account i for material inh: i
2. The seismic excitation from the supporti i-circul indrical valley invol
‘motions in the upstream-downstream (lateral) direction. The vertical and longitudinal components of actual
ground motions are ignored herein, since, as usual in earthquake engineering, their effects could be assessed
independently from the effects of the lateral motion. No slippage is allowed at the dam-valley interface.
Moreover, the supporting valley is assumed to vibrate as a rigid body, with all points at the dam-valley

interface experiencing identical and (in-phase) hence, a single suffices
todescribe th itati idently, reality is icated. Seismic shaking is the result of a multitude of
body and surface waves striking at various angles and creating reflection and diffraction phenomena; the
resulting oscillations differ (in phase, i and istics) from point to point along the
d; lley interface. 1 the hesis of identical and synchronous excitation, advanced

ly for ical ience and employed invariably in all the ioned 3-D studies of

earth dams, is a reasonable simplification for vertically incident plane SH-waves. For instance, the important
wavelengths at frequencies f equal to, or near, the fundamental natural frequency f; of the dam are typically an
order of magnitude larger than the dam height; hence, phase differences between arriving motions at point A
and at point B (Figure 2) are small, i.e. the waves ‘see’ the dam almost as a mere point in space. However, this
may not be true for the higher-frequency components of the ‘motion. Trifunac?® showed that, for wavelengths
shorter than four times the radius of an infinitely-long earth-filled semi-cylindrical valley, substantial
differences arise in both magnitude and phase angle of the motions at various points on the base.

3. Only horizontal lateral shear deformations take place with th i 1di u,and
shear stress, 7, and t,,, being i of the y di i ly distributed across the dam). These
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the actual pattern of displacements and stresses. Thus, although vertical and longitudinal displacements do
take place as a result of multiple wave reflections at the sloping faces and rock abutments, it is only the lateral
hori. i that are i in all but a few wave frequencies. Furthermore, in most cases,
the actual distributions of shear stresses across the dam are indeed approximately uniform—the main
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discrepancy arising fmm the unavoidable decline to zero of the actual stresses at the two (stress-free) sloping

faces of the dam.” %>
4 Hydrodynamlc eﬂecvs from the reservoir water are not taken into account. Recent studies on
ion?? confirm that for dams such effects are, indeed, of only secondary

importance.

FREE VIBRATION: ANALYSIS AND RESULTS

With the i ions, consider acting on an infinitesimal horizontal element of
the dam of volume b dx dz = (B/H) z dx dz (Figure 2). The net shearing forces on the horizontal and vertical
faces of this element are, respectively, expmsed as

- [z ,,(x,z; 1) ]dxdz (1a)
and
- Ea%[r,,(x,z; ]zdxdz (1b)
Denoting by u = u(x, z; t) the lateral di: relative to the ies, the total inertia force on the
studied element equals
pii(x, z:l)%zdxdz (1)

with & = d%u/dt>. Equating the sum of the above three forces to zero while accounting for the
stress-displacement relations

ou
V=3t = 05 @
leads to the following equation of motion:
Pu Pu 1ou -
G(ﬁ*ﬁ*;a)”" ®

To account for the dissipation of energy due to inelastic soil behaviour, linear hysteretic damping may be
introduced in equation (3) by replacing G with the complex valued modulus G* = G(1 + 2if), where f is the
damping ratio and i = ./ — 1. However, since the effect of damping on the natural frequencies and modal
shapes is usually rather small, it is common practice to neglect it when analysing the free vibration
characteristics of earth dams.?? Instead, the damping ratio is introduced directly when studying forced
vibrations, by superimposing properly damped modal responses. This practice is followed herein and, thus, the
real shear modulus G is left in equation (3). The analysis with complex G* is completely analogous, presenting
no additional difficulty, as will be shown later.

In view of the shape of the boundary, it is computationally expedient to convert to polar cylindrical
coordinates (Figure 2). After some algebra equation (3) transforms into

a‘;+Zra" g;zi»colﬂ%:r’%ﬁ @
wnh u= u(r 8; 1). The solution of this equation must respect the free-vibration boundary conditions of
at the cylindrical base (no slippage, valley stationary):
u(H, 6,1)=0 ©)
and of vanishing shear stresses at the crest:
620 00=620¢x0=0 ©
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while u must attain a unique value, independent of 0 at the centre of the crest:
Ou
20 60=0 )

The steady-state solution of equation (4) may be cast in the form
u(r, 6; 1) = ®(r) ¥ (6) exp (iowr) @®)
Indeed, substitution into equation (4) yields
2 30 2r o0(r)
) o0 o
in which k = @/C, (wave number) and C,= \/ (G/p) (wave velocity); @ represents circular frequency in rad/s.

Since each side in equation (9) is an exclusive function of either r or 6, their equality is impossible unless they
both attain a constant value, say a. Thus, two simull ji ions are derived, one in ®(r): (

P07 +2r® + (kr? —a)® = 0 (10)

:
it L PO _cot00%@ 5

and one in ¥(6):
¥ +cot 0¥ +a¥ =0 (11
(The prime indicates derivative with respect to r or 0.)
Equation (10) is recognized as a Bessel equation. Its solution that is consistent with equation (6) reads

O) = A’ 77 J, k) 12)

v=(a+1/4"2 (3)

in which J,(+) denotes the first-kind, v-order Bessel Function, and A’ is an integration constant.
The solution to equation (11) is expressed in terms of two Gauss hyper-geometric functions* of a and

cos?6:24

Bop+l 1 A Ispelrp3 )
=A"F| -5,4—,=; o7 —_ 5 14a)
¥(6) AF( 2 z,z.ws0+A cosOF 7 2,z.cosf? (142)
with

mp+l)=a (14b)

Noticing that equations (7) and (8) require ¥(6) to be a constant, independent of 0, leadstop =a =0,4"" = 0(
and ¥(0) = A". Then, equation (13) simplifies to v = 1/2, the respective Bessel function can be expressed in
terms of sin kr, and by combining equations (8) and (12) the general solution is written as

e A(%)I ngcxp(imt) (15

Enforcing equation (5) leads to sinkH = 0, from which the natural circular frequencies , (in rad/s) are
readily recovered: i

o=l =123, (160)
Alternatively, the natural frequencies f, (in Hz) and periods 7, (in s) are
C} 12H
=n—= =—— 16b)
& noy and T=o c (16b)

/- = o Hat+l). .. (@+k—1)BB+1)... B+k-1) ,
AASEE b WA+ k1)
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Substitution of equation (15) in equation (14) leads to the ing modes of
normalized to a unit maximum value at r = 0:

o
sin (m(—)
oSl a7

;
i
"H

Results

As di ed in the i ion, it has been i shown!~” that for earth dams built in relatively
narrow valleys the plane-strain assumption utilized in the 2-D (and the shear-beam) response analyses may not
be realistic. The rigid rock boundaries have a generally stiffening effect: natural frequencies increase and modal
displacement shapes become sharper as the canyon becomes narrower.

The first of thy h isi in Figure 3. In i Figure hy h d of the
fundamental natural frequency f; on the aspect ratio L/H and on the shape of the canyon. Four idealized
shapes are studied, ranging from rectangle to triangle and including the semi-circle, for which L/H = 2 and
/i = 050 C,/H [equation (16b)]. The fact that the latter expression plots very close to the fundamental
frequency f, & 0-48 C,/H of a similar dam founded in a trapezoidal canyon with L/H = 2and L/B = 2%isan
indication of the accuracy of thedeveloped solution. f, ,, = 0-38 C/H h | of
an infinitely long dam responding in pure shear.!- 222 The stiffening effect of the canyon geometry is evident in
this figure. It should be noted, however, that other factors not explicitly recognized in Figure 3(a) may also have
an effect on th 1 of adam. Thus, the presence of a soft core leads to a lower
first natural frequency, even when the average modulus remains the same.'® 2* Also, whenever the analysis
‘suppresses’ one of the degrees of freedom of each point in the dam, the computed frequency (artificially)
increases; this is the case with the shear beam as compared with the plane-strain analysis (vertical motion is
suppressed in the former), and also with the analysis of Makdisi et al.® as compared with that of Mejia et al.” 4
(longitudinal motion is suppressed in the former). These remarks may help explain why the two ‘data’ points of
Reference 8 (dam with core, 3-degrees-of-freedom per joint) plot quite lower than the lines computed from the
results of Reference 6, for the same canyon geometry.

The higher natural frequencies f,, n = 2-5, of dams in valleys with L/H =2 are compared with the
respective frequencies, f, , of the infinitely long shear wedge in Figure 3(b). Results are available only for
semi-cylindrical and rectangular canyons. Perhaps surprisingly, the differences among the three sets of
frequencies wither away as n increases, and for n >3 £, appears to be practically independent of canyon
geometry. However, this near-coincidence of higher natural frequencies is rather circumstantial and is due to
the fact that the ratio f,/f; for both of these canyons is lower than the corresponding f, /f; « ratio for
the shear beam. For instance, equation (16b) for a dam in a semi-cylindrical canyon yields f;/f, = 3, from
which f; = 1:50 C,/H; by contrast, the shear-beam solution gives f; /f; s, ~ 8:65/2:41 ~ 360 from which
S = 360x038C,/H ~ 1:37 C,/H. Therefore, f, 4 is only 87 per cent less than the 3-D value of f;,
compared with the 24 per cent di in the respt d 1 ies. It will be noted, however,
in Figure 4 that the modal displacement shapes at these higher natural frequencies are at least as sensitive as the
fundamental shape is to variations in canyon geometry.

ison of four natural mode sh: in Figure 4also pertains to dams in a circular and a rectangular
canyon (both with L/H = 2) and to the infinitely-long shear wedge. No it results are available to the
authors for the mode shapes of dams in canyons of other shapes. Displacements normalized to a unit
amplitude at mid-crest [ Figure 4(a)] and shear strains y,, and 7, normalized to a unit amplitude at the base
[Figure 4(b)] i Shown are the distributions along the crest, U, (x, z = 0)and T, (x, z = 0), and
along the depth from mid-crest, U, (x = 0, ) and T, , (x = 0, z). These two distributions are identical in a
cylindrical canyon, but differ from each other in a rectangular canyon. Notice that the cylindrical canyon leads
to a sharper attenuation of displacements with depth from the crest, and to larger shear-strain values near the
upper half of the dam.
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RESPONSE TO BASE EXCITATION
When the valley is oscillating as a rigid base with an acceleration i, = u () in the y direction, the displacement
u = u(r, t) of the dam relative to the base is governed by
[GRuioul
At L) as)
For an arbitrary seismic base excitation ii(t), equation (18) is solved by mode superposition:*

u(r, 1) = Z U,(r)P.D, (1) (19)

in which U,(r) is the nth mode displacement shape given in equation (17); P, is the participation factor of the
nth mode:

P, = B =2(-1y*! @0
J. J‘ v}(r)p—r’sinodddr
and D, (t) is obtained by means of the Duhamel integral.2®

From equation (19) expressions for the absolute acceleration i, and the maximum shear strain y,,,, are
directly recovered. For the former: -

i (r, 1) = tig(0) + f U,(r) P, D,(1) @

ami

For the latter, since evidently y,, = y,o = 0 at every element,
Tanlts = 1= il 0.0 p 1) @)

Pt v

When evaluating the series in equations (19) and (22) only the first few terms (usually not more than 3 or 4) need
be considered. Convergence is slower, however, for the series associated with the absolute acceleration in
equation (21).

Steady-state response

It is of interest to obtain the steady-state response b: ion i (¢) = iig ' In this case,
equation (18) can be easily solved analytically for lhe rzlnuvc lateral displacement u(r; t) = u(r)e'®:
u() _H sinkr @)
ug,  rsinkH
from which th ion of the absol leration, i + iy ly call ification’ function,

may be readily derived:
(24

in which y = r/H and a, = wH//C,. Equations (23)-(24) are valid for both real C, (material damping = 0)and
complex C} = C, \/ (1+2ip) (material hysteretic damping ratio = f); in the Ial(er case use is made of the

Tlm is_possible because the mode displacement shapes U,(r) of cquation (I7) satisfy the ‘orthogonality' condition:
4 §5 Ua(r) Un(r)dm(r,8) = 0 if n # ‘m; dm(r, 6) is the mass of an infinitesimal horizontal element. Indeed, in this case it can be shown
lhe T5c {} sin(nap) sin(mp)dp, which vanishes for n # m.
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following expression for the sinus function of a complex number:
sin(x +iy) = sin x cosh y +icos xsinh y 25

Equation (24) is plotted in Figure 5 for three values of the depth parameter: y = 0 (mid-crest), 0-25 and 0-50.
The results of a plane-strain shear-beam analysis for the mid-section of the dam are also shown for a
comparison. It is evident that, in addition to predicting lower natural frequencies, the plane-strain model
predicts lower values for the amplification at first and higher resonances.

The effects of canyon geometry on AF are illustrated through the comparison of Figure 6. All dams have an
L/H = 2. Results for the triangular canyon (from Reference 6) are available for values of the frequency factor
ag only up to about 5, and thus the companson is limited to a frequency range encompassing only the

and none of the higher of the died dams. The curve for the rectangular canyon was
prepared by the authors using the classical solution of Hatanaka' and Ambraseys.? The plots in Figure 6
exhibit a consistent trend and reveal that the value of AF at first AF . is dent of
the exact canyon shape; for the considered value of the hysteretic damping ratio, § = 0-10, AF_,, ~ 10.
Moreover, the results of Makdisi et al.® show that, in triangular valleys, AF ., & 10 for all values of the aspect (
ratio L/H!

Frequently in practical seismic analyses of dams built i in narrow valleys, various cross-sections in addition to
the mid-section are studied using pl: train for Toi i the validity of such a procedure,
Figure 7 compares the plane-strain AF at the crest of the quarter-section (x/L = 0:25) of adam in a cylindrical
valley, with the ‘3-D’ AF computed from equation (24) for r/H = 0-50. We notice that the plane-strain
fundamental resonant peak exceeds the respective 3-D’ resonant response by about 30 per cent. The
discrepancies at higher frequencies are even greater, with the plane-strain solution always providing higher
values than the developed (‘3-D’) model.

Also of great interest is the study of shear strains. Referring again to the mid-section of a dam in a cylindrical
canyon, Figure 8 presents the variation with a, of the normalized steady-state shear-strain amplilude
75(CY ¥/(H iiy), for three depths r = 0-25H, 0-50H and H (bottom). C ison with th ding plane-
strain curves reveals a similar overall shape of the two sets of results, with the developed ‘3-D’ solution
invariably yielding lower peak resonant values; the difference reaches an appreciable 70 per cent at the base of
the dam (r/H=1).

ing important ions are in full itative accord with the findings of Seed and his
coworkers® ? for dams in triangular canyons: the plane-strain solution for the mid-section provides lower
values of accelerations but higher shear strains and stresses at the first resonance.

Seismic response (

Earthquake ground excitation differs from a harmonic motion in two important aspects: it contains a fairly
broad spectrum of frequencies, and it is of a random and transient nature. Thus, the seismic response will be
transient and the effect of each ‘contributing’ frequency will not necessarily be the same as when the
acts alone, under steady-state conditions.

Asan example, the response of an idealized 120 m high dam in a U-shaped canyon is subjected to the N46W

of the ground ion recorded at the sub- of the 1901 Avenue of Stars building, in

Los Angeles, during the 1971 San Fernando earthquake.” The time-history of acceleration scaled to a peak
value of 0-20g, the Fourier amplitude spectrum, and the relative dit and pseud
response spectra for 5and 10 per cent damping are presented in Figure 9. For this type of | ground excitation, the
dynamic umform propemes of the dam are taken: C, = 280 m/s and § = 10 per cent.

The 3-D' and shq in response histories, computed with the presented

theory for several points in the dam, are compared in Figures 1012 with the respective histories computed for
the dam mid-section by the shear-beam theory. The distributions with depth from the crest of the
corresponding three sets of peak values are compared in Figure 13. The following trends are worthy of note in
these figures.

1. The largest discrepancy between ‘3-D’ and ‘2-D’ (shear-beam) results is observed between the absolute
acceleration histories; the ‘2-D’ peak accelerations at the upper third of the dam are only about 4050 per cent
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of the ‘3-D’ values. Thisis consistent with the findings of Makdisi et al.,® and may be explained by noticing that:
(i) the 10 per cent damped spectral acceleration of the input motion at the fundamental period T; = 2
x 120/280 ~ 0-86 s of the ‘3-D’ dam equals about 0-11g, compared to only 009g which corresponds to T
=T, 261x 120/180 = 1-12 s of the ‘2-D’ dam;* and (ii) the contribution of the higher modes to the near-
crest ions is much more i for the *3-D’ dam, as evidenced in the comparison of Figure 5, and,
also, by recalling that while the participation factor | P, | of the nth mode remains constant for the 3-D’ dam
[equation (20)], |P.| decreases monotonically with n for the ‘2-D’ dam (|Py| ~ 1-61, |Py| ~ 107,
[P5] = 085, | P;| ~ 073 and so on) (References 1, 10, 25).

2. By contrast, the displacement histories experienced by the two dams are very similar in magnitude,
throughout the depth from the crest. In fact, the 2-D’ displacements are higher by about 10 per cent. This is
again i First, th  relative di f the input motion at the two fundamental periods
are equal to about 2-1 cm for the 3-D’ dam and 2-8 cm for the 2-D’ dam. And, second, as is well known, the
higher modes are of only secondary importance to displacements. This is evident in Figure 11: oscillations of
both ‘3-D’ and 2-D’ di occur at ially the fund: 1 natural periods of each system (0-86
and 1-12 s, respectively), with smaller icipation modes (i.e. lower periods). In fact, repeating the analyses
which led to Figure 11 but with only the first mode participating in the response, yields very similar
displacements histories; the peak values at the crest are apparently equal to 42 cm for the ‘3-D’dam and 45 cm
for the 2-D’ dam, which are within 25 per cent of the ‘exact’ values of 5:25 and 5-88 cm, respectively. Notice also
the different contents of di and ion histories; the latter exhibit vividly the

it i by the higher modes—in accord with the remarks of the preceding paragraph.

3. The shear strains, y,, = 7,, (2 ), computed by the two analyses (‘3-D and ‘2-D’) are of similar overall
magnitude, differing only in their distribution with depth from the crest. The maximum peak value of y,, is in
both cases slightly over 7 x 10”4, but it occurs at a depth z ~ H/3 from the crest in the ‘3-D’ analysis, while
z ~ 2H/3 in the ‘2-D’ analysis. From this value of 7, one may estimate an ‘effective’ shear strain amplitude
7.~ 4 x 10~ *. Using experimental damping-versus-strain data (e.g. from Figure 8 of Reference 14), one can
read for th value of y, ivalent damping ratio B, & 10 per cent, which is equal to the value assumed
in our analyses. the modulus ion-against-strain curve of Ref 14 yields for the
equivalent modulus G, = 0-50G,, where G, is the small strain (< 10~) shear modulus. Since an S-wave
velocity of 280m/s was assumed herein, one can postulate that an initial velocity of approximately

0.5

base excitation

ACCELERATION (Q)

0 4 6 B W 12 W 16 W 20
TIME (SEC3

Figure9. (a)

i ib-b f 1901 Avenue of Stars, Los Angelcs, in the 1971 San Fernando carthquake,
scaled to a 0-2g peak valuc (N46W Component).?” (b) Corresponding

Fouricr amplitude and damped response spectra®

* Also notice the differences in the Fourier amplitudes at these periods.
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Figure 13. Distribution with depth of peak values of acceleration, displacement and shear strain 7,, at mid-section of a
dam from the developed theory (3-D') and from plane-strain shear-beam analyses (2-D') (H = 120m, C, = 2280 m/s and ; = mm

280\/2~400m/swouldbenmasarytomake hy used in th 1 Indeed,
400 m/s is a realistic initial wavc-v:locn(y for a 120 m tall modern embankment dm‘ 10.11 Thys, the results
ind reported h based on linear vi which used moduli and damping ratios

roughly consistent with the level of shear strain that would develop under moderately strong excitations in tall
dams.
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CONCLUSIONS
A closed-form analytical solution has been developed for the dynarmc lateral linear shear response of
dams by rigid ical canyons. studxes have been
d for natural ies and modal shapes, steady-state response to har ic excitation, and seismic

accelerations, displacements and shear strains. Particular emphasis has been given to assessing the importance
of canyon geometry on seismic response. Comparisons with the results of ‘2-D’ analyses of the dam mid-
section (considered infinitely long) indicate that the presence of a semi-cylindrical canyon increases the
fundamental frequency and may lead to increased ions during earthquake shaking.
Seismic displacements and shear strains, on the other hand, show a small sensitivity to canyon shape and their
relative magnitudes will depend on the exact frequency content of the excitation.
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